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ABSTRACT 

Previous efforts to derive body motion parameters from monostatic 

scattering matrix data have been limited by mathematical complexity. 

An account of these efforts is given.  Then a proposed method is 

described for the case of precession, which allows the simplicity of 

a geometric approach and avoids approximation in its concept. 

This method is formulated as a minimization problem with only 

three of the precession parameters as the arguments.  The basic idea 

is to find a cone on which the spacing of successive positions of 

the body axis shall be the dynamically correct spacing.  Then the 

two remaining parameters are easily evaluated. 
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SECTION I 

INTRODUCTION 

In the course of seeking methods of deriving motion parameters 

from scattering matrix data, a number of methods have been considered 

and reported earlier by the authors in a number of internal MITRE reports 

These methods appear to be limited in practice either by computational 

complexity or by the need for approximation. 

In view of such difficulties, it is expedient to consider, at 

least initially, a method which allows the simplicities of a geometric 

approach and conceptually avoids approximation.  Since it is a 

monostatic method without approximation, it requires the assumption 

of a motion model which in this case is precession for objects of 

rotational symmetry.  The formulation given here, however, can be 

made in terms of just three motion precession parameters.  In this 

work, the assumption is made, of course, that such an object depolarizes 

at the operating frequency to an extent which allows the determination 

of the orientation of the body (electrical) axis in a plane normal 

to the radar line of sight.  It is to be noted also that a monostatic 

method for determining the body axis orientation using any type of 

observation data for a body of axial symmetry yields ambiguities. 

Before discussing the method itself, it is useful to put into 

perspective the general problem in terms of the motion model, 



observations, unknowns, and analytic formulation.  Thus, the paper 

divides into two parts with background and alternatives first discussed 

followed by an exposition of the proposed method. 

Finally, it is to be noted that, although we deal with one 

motion technique applied to scattering matrix data, the use of phase 

and polarization information in radar returns has found widespread 

application in work at MITRE, benefiting methods in motion and shape 

determination both for long and short pulse data on whole object or 

f i  21 
scattering center descriptions        .  One author (0) has applied 

the scattering matrix to wedge parameters in other internal MITRE 

reports. 



SECTION II 

THE PROBLEM 

Using an earth based radar, observations are made of an object 

in orbit possibly undergoing additional rotation movement about its 

center of mass.  We illustrate the three motions in Figure 1, 

In general all three motions act to determine the object's 

orientation with respect to the radar so that this target-sensor 

orientation affects the various possible sensor measurements.  In 

this paper we deal with the source data in the form of the polarization 

scattering matrix from a monostatic radar. Written in a circular 

polarization basis, this matrix can be represented for backscatter 

from a reciprocal scatterer as: 

12?     i2Y^ * a e Ve  F ^ 

% * s -^21^ a  -125 ) (1) 

ve   F pe 

where a, p" , v are complex, %,  represents body orientation about the 

line of sight and, V^ ±s  the Faraday rotation.   '  '   .  For 

an object with a plane of symmetry containing the line of sight, 

a = 3.  Use of monostatic data implies both a TT and TT/2 ar.isiguity 

in 5 for axially symmetric bodies.  Since the sense of the body 

axis vector is not of interest here, the TT ambiguity need not be 

dealt with.  The process of obtaining a solution provides a means 
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in the monostatic case for resolving the TT/2 ambiguity.  The condition 

of sufficient depolarization is imposed to have a measurable.  This 

latter condition is enhanced at operating frequencies near resonance. 

As the frequency increases with geometrical optics applying, all 

targets become sphere-like with a -• 0.  Finally the assumption of 

backscatterer is also an approximation, good for many motion environments, 

We can consider the motion problem using scattering matrix data 

in terms of two planes designated the viewing plane and the measuring 

plane as shown in Figure 2. 

Considering all motion effects absorbed into the measurement 

of ?(t) , we find 

< y (t), u(t) > 
Y(t) = tan ?(t) = —^ JJ  (2) 

< XR(t) , U(t) > 

in which <, > means scalar product.  The projections are indicated 

in Equation (2) to be onto time varying vectors y„(t) and * (t) . 
R        K 

This time dependence implies that a fixed-in-space inertial frame 

is to be used as a reference system. 

Equation (2) may be recast into the following useful forms 

< LY(t) *R(t) - yR(t)], u(t) > * < n(t), u(t) > = 0       (3) 
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in which n(t) lies in the measuring plane and is normal to the viewing 

A 
plane. With u taken as unrestricted in orientation and magnitude, 

Equation (3) is the equation of the viewing plane. 

Before proceeding to more detailed analytical formulations, it 

is worthwhile to view the motion of the viewing plane as decomposed 

A     A 
into infinitesimal rotations of u and r which are unit vectors in 

the direction of the body axis, u, and line of sight, r, respectively. 

We illustrate the situation in Figure 3. 

The infinitesimal rotation of the viewing plane can be given 

in terms of R as 

dR = Rxdn=rxdn+uxdTT 
(4) 

= dr + du 

Since any component of dO normal to the viewing plane keeps 

A  A  A _ 
this plane invariant in the x, y, z space, we can consider that dw 

effectively lies in the viewing plane and gives the following 

decomposition 

dH = dft + dH 
r u 

A A 
(along r)     (along u) 
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Thus dw determines the direction of u and 
u 

dR = r x dfi   +  u x dU 
u r 

since 

A A 
(motion of r     (motion of u 
about u) about r) 

rxdQ =uxdQ =0 
r       u 

(5) 

A 
For example with u fixed in inertial space, 

du =  uxdT5=uxdn    =0 r 

so that u is parallel to dH, (dU - du ).  Similarly for r fixed in 

inertial space , r is parallel to dft (dO = dO ).  In both cases dQ 

has no component normal to the viewing plane. 

With ?(t), the angular position of u about the line of sight 

A   . 
direction r, then d%  gives |dfl | . 

If the conceptual model just outlined is viewed in terms of a 

possible approximation method for deriving the motion, not requiring 

the assumption of any motion model, then to give dfi = du - dU 

A A  -_ 
and so the direction of u, we need to measure or approximate r, dU, 

and  dW    such  that r 



A A        A        A 

whore 

with 

)      r   =   r   (9 ,   0,  UU       \ ,   ri)   is   dct ermiwed 
E 

0 = radar elevation 
A 
0 = radar azimuth 

JU^ = earth rotation rate 
E 

X = site Longitude 

r\ = site latitude 

2) dCl    = |d?|r 

3)  dfl = |dT}|i« ; i^ = unit vector in dH direction 

i   -1 i       * *    1 
dft| = I cos  \   lim < n(t + At), n(t)> f 

^ At-0 J 

r- * A 

n(t + At) x n(t) *    T     n(t + At) x n(t) Ln = lim    L 7*   —A    ; J 
At-0   n(t + At) x n(t) 

It is to be noted that the restriction to a monostatic radar 

is most severe since at best, with no approximation, it requires 

the assumption of a motion model. 

Returning to the formulation via the scattering matrix, the 

restriction to a motion model can be reasonably generalized to 

10 



precession. We picture this in Figure 4 in terms of the inertial 

frame and an angular momentum axis system. 

Taking account of the inertial reference and angular momentum 

systems, Equation (3) can be written as, 

I L   [Y(t)  ali(t) " a2i(t)] bij "j(t) = ° (6) 

j=l  i-1 

where Y(t) = tan §(t) is measurable, 

u.(t) = u. (9, 0, 0 , t) ; j = 1, 2, 3, are unknown coordinates of 

A        ~ ~ ~ 
u in the (x, y, z) system and 0  the 

initial value of 0, 

A    « 
a.. =a..(uu  \y  r\,   9(t), 0(t)); i, j = 1, 2, 3 are computable 

coefficients of the transformation 

from radar to inertial reference 

coordinates, 

b . = b .(P.O.); i, i = 1, 2, 3, are unknown coefficients of 
IJ    IJ 

the transformation from angular momentum to 

inertial reference coordinates. 

Formally at least Equation (6) holds for motion with torque 

in which P = 0(t) , a = a(t) , 9 = 9(t), 0 = 0(t) and if spin is 

11 
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observable Y = Y(t) where in each case general time functions are 

applicable.  With torque free motion 0 • constant and a » constant 

and 6(t), 0(t) , Y(t) can either be general (e.g. the case of an asymmetric 

top) or, for the further specification to precession, 6,0, and Y are 

constants.  The formulation of u(t) relative to 0, a, 8, 0, 0 and Y 

is straightforward in this case.  That is, u depends on six fixed 

parameters and five when, as here, spin is assumed unobservable.  When 

general time functions are assumed, expansion representations can 

increase the number of unknown parameters to an unmanageable extent. 

Thus, Equation (6) can be viewed as a system, with time, of space 

curves in 5-dimensional space of the unknown precession parameters 

(3, a, 9, 0 , 0).  Then the equation is applied at t • t • k ^ 5 for 
O K 

solution of the parameters.  This system is non-linear thus admitting 

a family of solutions with restrictions imposed by the allowable range 

of the parameter values. 

Generally this is a most impractical approach to solution.  Some 

help may be gained by measuring at times when Y(0 a 0 in order to 

simplify.  In addition a formulation in terms of Cayley-Klein parameters 

and complex direction numbers can provide some compactness at least 

formally.  We illustrate this by giving Equation (2) in detail in 

both conventional and Cayley-Klein form. 

13 



3     "3 

2      Za2i(0l'   P2>   03'   t}   bij(^a)   "j   (G'   V  0'   t} 

Y(t)   =   < .i=i   i=3 
3       3 (7 

L     £ali(3l'  32'   03'   t}   bij(^'  a)   uj   (S'  V  0'   ° 

(7a) 

?(t)   = ARG 
(H |i      + v v ")   (cot 6/2  e10t)  +  (-H v,   + v u ) 

a   b a  b  a  b a  b  

L (-V    n.     + U    V.   )   (cot  0/2  e10t)  +  (V  V   + H    kU)** a     b a     b abab 

(7b) 

where   cot   9/2   e is   the  complex direction  of  u,   initial  0     =0,   and r ' o 

the Cayley-Klein parameters are 

\1     = cos — e 
a      2 

x  (-1/2) (P2 + 33);        Px (1/2) (02 - 33) 
Va = sin j~e 

U, = cos — e 
b      2 

g (-1/2) (a + 0Q) 
;  vb = sin 2 

e (i/2) (a - 0Q) 

with 

3 , (3 , @„ = Euler angles relating inertial system to radar 

system, 

3, a, 0   = Euler angles relating inertial system to momentum 

system, 

and (  )  the conjugate of (   ) . 

The coefficients of cos 9/2 e    (9 and 0t are the spherical 

angles of the direction) in the linear fractional transformations 

of (7b) represent the combined effect of transforming from the radar 

to the inertial system via 

L4 



\d V 
a a 

-V \1 
a a 

and from the momentum to inerttal system via 

^b   Vb 

"Vb   ^b 

by matrix multiplication.  The parallelism between (,7a) and (7b) is 

complete if, as is possible, we take in (7a) 

and 

b. . = b. .{&,  a, 0 ) 
ij   ij       o 

u. = u (9, 0, 0, t) 

An alternate phrasing of (7a) sometimes considered can be 

written as 
/ 

Y(t) =( 

3 

3 

\ 

(8) 

where 

Ckj = .\i<h>   02' P3' C) bij(0'a) =iaki(a,E'X^'§(t)' ^»V^ 
i = l i = l 

k = 1, 2 

15 



so that 

P ' = 0 ' (P, a, t); s = 1, 2, 3 
s    s 

Also, ^ 

cos Aft) = }  ) a. b  (g a)u. 
u L 3L ij      j 
j=l i=l 

A      A 
where A(t) is the aspect angle between u and r. However, this relating 

A 
of the momentum to radar systems directly hence of a to the radar in 

terms of aspect angle A(t) is of little consequence since the 

parameters $, OL must eventually be exposed for a proper solution. 

More importantly, all approaches which attempt to solve for 

the precession parameters via this system of non-linear equations 

_ A 
are at best arduous.  Rather if this equation, <n, u> = 0 is considered 

as the equation of a plane (viewing) in combination with a priori 

knowledge of precession mechanics then an alternate and greatly 

simplified approach emerges. 

However, before passing on to the details of the method, a 

few remarks concerning particular cases are now appropriate. 

A 
Case (1) u fixed in space (stabilized inertially) . 

Then the intersection of two viewing planes at separate times 

A 
provides u as illustrated in Figure 5. 

Also with very slow motion in inertial space, with no motion 

model assumed, the above method can serve as an approximate solution. 

16 
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A A 
With u determined the angular momentum unit vector direction m is 

T 
then given by the eigenvector of U U for the minimum eigenvalue where 

U = (Au.. =(u    -u  ); j-1,2, 3;i-l, 2  ti 1J      LTi , J   L  , J 

A 
and u.. are the components of u(t.) in inertial coordinates. 

Case (2)  If the local motion, w is very rapid compared to other 

motions, then with  t. - t. , = X, where T is the precession period, 
A rn 

u(t.) is effectively stationary and is given by the eigenvector of K K 

A 
for the minimum eigenvalue where, using components of n, 

H = (n ); j = 1, 2, 3; i = 1, 2,..., N + 1 

A test on the determination of T can be made in terms of the 

A A 
singularity of K. After u is obtained then m can be obtained from 

[u(t) + u(t + T/2)]. With all other precession parameters obtained 

A 
a recalculation of T, using the formulation of u(t) in terms of 

6,0 ,0, can be made to adjust T and repeat the process for improved 

estimates. 

18 



SECTION III 

THE METHOD 

Briefly the method relies on the correct solution having equal 

values of actual or scaled azimuth spacing on the precession cone of 

the body axis orientation determined at successive pulse times that 

is  on the linear relation between azimuth and time.  The specification 

of body axis orientation is made as the intersection of the half cone 

of precession and a plane, the viewing plane, containing the line 

of sight and the body axis (the viewing plane also contains the 

projection of the body axis onto the measuring plane). 

More particularly, an initial trial cone of precession is chosen 

by specifying with respect to the chosen inertial system the azimuth 

(OC ) and polar angle (3 ) of the cone axis as well as its half angle 
c c 

of precession (9 ).  With a , 0 , 9  given, the intersection of the 
c        c  c  c 

cone with a sequence of say N viewing planes provides at most a 
2N 

sequence of 2N body axis directions denoted by [u.J    since each 
1 i = l 

plane and the cone intersect along two direction lines. 

Using unperturbed data measured at equal time increments or 
N 

appropriately scaled one of the consistent subsequences of [u.J 
1 i = l 

will result in equal azimuth spacing about the cone axis if the trial 

cone parameters a , 3 , 9  are correct.  Equivalently stated, such 
c  c  c 

a sequence of azimuth differences will have zero variance.  The 

parameters 00 , 8 , and 9  on which the azimuth values 10.j and so 
C   C        C 1 

19 



the variance depend are adjusted to the optimum values for minimum 

variance which is zero in the unperturbed case.  Various functional 

minimization procedures ace possible.  It is possible to begin with 

a form of gradient method known as direct search, then as required 

by a reduced convergence rate to switch to another calculation, say 

Newton-Raphson, near the vicinity of the minimum. 

The testing of the method can be done with the aid of a 

radar motion simulation program developed in mid-1964. This 

simulator characterizes motion in terms of the earth, orbit and local 

(about object c.m.) motion.  The latter allows for general torque 

free motion or various stabilized motions. An acquisition capability 

for any number of sites and objects is also included.  It provides 

a scattering matrix radar model in linear or circular polarization 

with conversion, and with data either unperturbed or perturbed by 

Faraday rotation, signal level and phase variation with range and 

various noise in amplitude and phase.  In addition a model is included 

for handling the bistatic case.  In the simulator the angle ?(t) is 

obtained as an Euler angle relating a body axis system to the radar 

system of coordinates. 

20 



SECTION IV 

FORMULATION 

From scattering matrix data the i  azimuth, §., of the body 

axis projection on the plane normal to the line of sight allows for 

a determination of the orientation of the i  viewing plane in terms 

A 
of its unit normal n. as 

1 

A A A 
n. = sin §. xR - cos ?. yR 

A      A 
where x and y are unit coordinate vectors in the radar system. 

K.      R 
A 

Written in the chosen inertial frame, the components of n. are 

denoted by n, n   n  .  The basic geometry is reviewed in 
i 1   i2   i_/ 

Figure 6. 

In order to maintain a consistent choice of test half cone, 

A  A A 
<u, m> is taken, say, always positive where m is the unit vector of 

the trial cone axis direction (along the angular momentum line).  In 

addition, it is useful in choosing consistent precession angle values, 

A  A 
0, and in setting up tests to deal with noisy data to take<n, m> >0 

that is 
3 
\ n. .m. = n.n sin 3  cos 0.    + n.„ sin (3  sin CC + n.„ cf.s 3 
/  lj j     ll       C       C    l2       c       c    iJ       c 

j-1 

= n.„ > 0 
LJ 

21 
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where 
A 

m. ; j = 1, 2, 3, are the coordinates of m in the inertial system 

~ A 
n. . ; i = 1, 2, 3,are the coordinates of n. in the test cone axis 
l j i 

A  A  A 
system (x, y, z) 

A    A 

z  = m is  related to  the   inertial  system by  the  polar and azimuth 

angles  3    and tt    respectively,  and 

0 £ P    < IT/2 ;   0 £ a    < 2TT 
c c 

If 

n..m.  < 0     , 
U      IJ   J 
j-l 

the signs of n. .; j = 1, 2, 3, are reversed. 

In addition to a and 8  the trial half cone is then fully 
c     c 

specified by assignment of 6 t   the half angle of precession with 

0 < 6 £ TT/2. 
c 

With noisy data , the intersection of all viewing planes with 

the correct cone is not assured.  To allow intersection of the test 

cone with most of the measured viewing planes, if possible, 0  is 

chosen so as to exclude only a small percentage, say |i of chese 

planes.  We may phrase this situation as follows;  let 

fi(9 ) = [i; n..^ sin 9 } 
c     '  i3       c 
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having measure 

0 ^0   l 

c 

Further, certain viewing planes which are preserved by the 

above selection process may be near tangency.  Of the viewing planes 

chosen we select the set of i values denoted by ft(p, 9 ) where 

Q(p, 0 ) c fl(9 ) 
c —   c 

such that, 

n(p, 6 ) - {i; ieQ(0 ), n,, * p sin 0 } N^'  c c '  i3        c 

Thus, Up and p are chosen to be less than but near 1; for 
c 

example \ln     = .99 and p = .95. 
c 

In order to visualize the analytic formulation more clearly, 

we show the geometry in Figure 7. 

As noted, for unequal interpulse times, the A0. values are 

simply scaled for equal values A0. using for each i 

At 

REF 
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Using then the two equations of the viewing plane and half 

cone in test cone coordinates we obtain 

<n. , X> = n       (sin 6 cos 0) + n.~ (sin 9 sin 0) + n._ cos 8*0 

(9) 

9 = 9 (10) 
c 

With 0 < TT/2, this establishes (with T) are already chosen) consistently 

the test half cone.  The sense of Ti is set by constraints on a    and 6 . \ J c     c 

th * 
Denoting the azimuth of the i  determination of u as 0. in 

i 

the axis system (x, y, z) attached to the test cone as previously 

described, we obtain as a function of a . |3 , and 9 only 
c  c      c 

an"1  [^1 + cos_1 I—, ^ifr  

'-ill Uil + \2 V tan 6c 

- f.(V 3cJ) + g. (ac, pc, 9c) 

where 

nij-niA' 3c); J-1.2>3 
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The first term f. measures the azimuth of the vector n. whilc 
i 1 

g.   measures   the  azimuth of u.   relative   to  n.   with  both measurenertts 
i 11 

in  the  x,   y   plane  of  the   trial   cone   frame. 

Since,  with n.„    >    0   , 

"ni3 
~    2 2sk 
(n.n     + n._   )     tan  o 

il i2 c 

ttien, 
TT/2 * g.   s:  3r/2 

which allows two solutions for u. symmetric about g.  = -.  We 

denote these solutions as g.,  and g.„ where the consistent selection 
il      i2 

of f , g and so 0 values is based on sign changes in n  , the possible 

monotorticity of 0 , and consistent ( Aip)  values. 

TT/2   S   gtl   £  TT   , 11   £   g.2   -   31T/2 

Using 

we  calculate 

0ik=  fi+8ik;   k=   !'   2> 

* -   0 

j-i 
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where , 

j = MIN ii'; i' > i) 
i' 

for all i allowed by the selection rules with k = 1, 2 and take j-i 

calculations for each i, j pair. 

The azimuth relationships are shown in Figure 8, 

Thus using the criterion of equal A0 values, a function is 

constructed which for the proper g set and correct precession 

parameters is minimum. 
M 

Denoting the set of such differences as [A0 , j  , ; k = 1  2 ° mk m=l 

then we calculate for k = 1, 2; 

M 

I 
m=l 

    1    » 
A0, • — )  A0 , , the mean 

k  M Li        mk 

and 

2 M 

U A0,  " R    <A0mk " A0k)2 ' the variance k 
m=l 

where 

a2A0k    =CT2A0k    ^e> pc ec)   • 
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Notice, the formulation is derived in terms of just three 

precession parameters so that we seek 

,   * *     „   * 
c c c      ' 

to  give 

°\ <Ca
c*> C >  =MINa2

k[(ec,ac) 9c)] 
0c'ac'9c (12) 

A9 
If we take 6 ' = 9  + A9  with -5-^- «1 and, calculate c    c    c      9 

2 
c 

G *..  (a , 3 , 9 '), k = 1, 2 after applying the selection rules /A0,      CCC r r  y    <= 
k 

based on (-1-  and p, and proceed similarly for 
c 

a2.,  (a ', 0 , 9 ) and CT
2
   (a , 3 ', 9 ) 

A0.  V C '  C ' Q.' A0,    c'  c '  c 
k k 

also including in these two cases the proper initial adjustment of 

~ 2 the sign of n  , then the function C    can be altered by simultaneous 

changes in coordinates (Ot ,3,9) along a direction approximating 

steepest descent.  Such a method generating so called normal equations 
2 

is often inefficient in computing.  In these methods v. .  evaluated 

or approximated for ( ) equal to 0, , (3  or 9  gives the new value 

directly as , 

gd Aa + %£- A0 + S£ A9 + a2   (a , 0 , 9 ) 
da   c  dp   c  o9   c    A0,   c   c  c 

c        c        c k 

k = 1, 2 
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The actual algorithm used initially will follow a method called 

direct search.  Adaptation and revisions of this approach have 

been considered in internal MITRE reports.  This method uses two basic 

approach moves called exploratory and pattern.  Each pattern move follows 

a successful exploratory move by duplicating this movement along the 

direction of change established by that exploratory move. 

If an exploratory move cannot effect a decrease in the function 

2 
to be minimized, here 0" , the coordinate position is returned to that 

effected by the previous exploratory move.  Then a new exploration 

is made which if unsuccessful results in a reduction of coordinate 

step size and another exploration etc.  In each exploration the 

coordinate size is fixed and its sign is chosen to cause a function 

decrease if possible.  Each coordinate is treated sequentially 

starting with the function value established by the previous 

coordinate change . 

Each pattern move whether successful or not is followed by an 

exploratory move from a new base point upon success or the former 

base point on failure. 

It appears that other useful additions to this process might 

check on the rate of change with respect to the coordinates, in the manner 

*This is a variation of the usual approach of duplicating both the 
previous pattern and exploratory moves.  For a sequence of successful 
pattern moves this could amount to duplicating the effect of all 
previous exploratory moves.  A preferred approach would seem to be 
one which weights recent exploratory moves more favorably. 
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outlined above under the discussion of partial derivatives to 

establish initial coordinate step size ratios as well as to determine 

when to switch to another method if the step sizes are too small in 

the vicinity of solution. 

In summary the motion method is as follows: 

2 
1. Select initial (3 , (X , 8  values and compute O     (3 , a , 9 ) 

C    C    C K.    C    C    C 

applying selection rules.  Other calculations, such as intersecting 

planes, provide aid in choosing initial values. 

Vf    *    * 

2. Apply minimization procedure to give correct 3 ,  0.     , G 

values for k = 1, 2, using for example modified direct search and 

Newton-Raphson methods.  Redundancy in the data with the correct k 

value can be used to improve estimates. 

3. Establish 0, 0 directly from 0. values and the optimum 
o i 

_ i'c    >v  „ * 
set 3  , a  , 9 

c   c   c 

Obvious extensions to the bistatic case, using the simulator 

again as a test mechanism, can be made.  The testing procedure will 

emphasize unperturbed data to test the accuracy and usefulness of 

the basic method.  This will be followed by tests with "noisy data" 

to evaluate the capability for practical operation. 
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